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SUMMARY 

In previous work the authors have emphasized, from funnel-cloud-length 

interpretation, that the exceptionally severe tornado is characterized by 

peak swirl speed relative to the axis of rotation on the order of 90 m/s, 

with 100 m/s being close to an upper bound. Further, they have emphasized 

that the thermohydrodynamic achievement of the pressure deficit (from ambient 

pressure) necessary to sustain such swirls requires that a particular struc- 

ture exist. Specifically, a dry, compressionally heated, relatively slow 

downdraft of air with tropopause-level properties must lie within an annulus 

of rapidly swirling, originally low-level air ascending on a near-moist- 

adiabatic locus of thermodynamic states. This so-called two-cell structure 

is analogous to the eye/eye wall structure that marks evolution of a tropical 

storm to a hurricane, albeit for the tornado the horizontal spatial scales 

are vastly reduced. The two-cell structure furnishes an observable possibly 

accessible to a passively instrumented, geosynchronous meteorological satellite 

with resolution refined for mesoscale phenomena, for early detection of a 

severe tornado. Accordingly, the low-level turnaround region, in which the 

surface inflow layer separates to become a free ascending layer is 

examined quantitatively; this is the first step in establishing properties 

of the two-cell structure of the severe tornado. From previously established 

properties of the surface inflow layer under the high-speed portion of the 

potential-vortex portion of the tornado (just prior to separation), the 

turnaround flow is satisfactorily modeled as inviscid, such that turbulent 

diffusion is relatively unimportant. Preliminary results indicate that swirl 

"overshoot," i.e., swirl speeds in the turnaround region in excess of the maximum 

achieved in the potential vortex, is modest. 



INTRODUCTION 

In previous work (ref. l), the authors discussed indicators of the 

evolution of a rotating thunderstorm (also, referred to as a tornado 

cyclone and a mesocyclone) to a storm of even greater severity. The 

relatively long-lived rotating thunderstorm (ref. 2) is characterized 

by a horizontal scale of 10 km and a vertical scale of 10 km, and by 

organized swirl with radial profile of Rankine-vortex type; that is, 

relative to the axis of rotation, the time-averaged azimuthal component 

of velocity increases monotonically with (cylindrical) radial distance 

from the axis to a peak value, and then decreases monotonically with 

further distance from the axis of rotation. The rotating thunderstorm, 

which tends to translate to the right of the mean ambient wind, has peak 

swirl of roughly 20 m/s; it is a vortex of one-cell type: low-level 

inflow, central ascent and upper-level outflow. About one-quarter to one- 

half of these storms evolve to a stage of greater severity in which a 

central, compressionally heated nonrotating central downdraft is inserted, 

such that the swirling updraft is displaced from the axis of rotation. 

Such tornadogenesis bears some analogy to the insertion of a relatively 

dry eye within an almost moist-adiabatic eye wall, the evolution that marks 

the intensification of a tropical storm to a hurricane (or typhoon) 

(e.g., ref. 3); of course the temporal and horizontal scales are greatly 

reduced for the midlatitude local-severe-storm phenomenon, relative to 

the tropical-cyclone phenomenon. Still, in both cases, the result is that 

dry nonrotating air whose thgrmo&-namic>.t&a_t_e; is rou=ghly_tha_t -o-f the -ambient 

tropopause may descend ant mode.st_.rat.e. t.h.r.oush. .t_h.e.depth~p;f__t~~trpp_o_sp=h.e.r,e, 

and the resulting increased low-altitude pressure deficit of the storm center 

from ambient may sustain an increased rate of swirling of up to about 

110 m/s. In both cases, the evolution to so-called two-cell structure 

(nonrotating central descent within an annulus of rapidly swirling ascent) 



may proceed rather rapidly relative to the time scale for intensification 

of the one-cell vortex. In both the tropical-storm and local-severe-storm 

cases, about one-third to one-half of the formidable one-cell vortices 

intensify to the potentially devastating two-cell vortices. 

Briefly, the authors (refs. 1,4) proposed that a necessary and 

sufficient condition for the exceedingly dangerous, exceptional tornado 

is the existence of an "eye" within an "eye wall"* (Figs. 1,2). The 

significance of this proposal is that it suggested the first explicit 

dangerous-tornado-indicating observable possibly accessible to a passively 

instrumented, geosynchronous meteorological satellite with resolution 

refined to mesoscale-phenomena requirements, The instrumentation of 

such a proposed satellite cannot penetrate the cirrus deck of the thunder- 

storm anvil. The "hole" in the cirrus shield generated by the compressional 

heating of descent may furnish a possible unique characteristic of the 

exceptionally dangerous tornado, Of course, the descent in the "eye" may 

not persist through most of the troposphere, so the tornado may not 

achieve extreme intensity; existence of a nascent "eyea does not assure 

either development or persistence of an "eye" extending through the depth 

of the troposphere. Also, early detection of an existing tornado, as 

distinct from anticipation of its onset, is the most that can be gleaned 

from the observable, Still, since the exceptional tornado can persist 

for over an hour and can have path length of 200 km, and since one rotating 

* 
The suggestion that a compressionally heated central downdraft extending 

the depth of the tropopause could serve as the mechani‘sm by which a pressure 
deficit consistent with about 100 m/s peak swirl could be achieved 
thermohydrodynamically, was set forth around 1970 by three research 
grow, independently (refs. 5-9). (Cf. refs. 10-15.) 



thunderstorm can spawn a sequence of several such tornadoes in succession 

(ref. 16), the observable is one that might be exploited with significant 

benefit by a meteorological satellite, as part of an early-warning system. 

The more common tornado, characterized by peak swirl of 50 m/s and 

by duration of ten minutes and by path length of a few kilometers, is of 

one-cell type, Without an "eye", and with only moist-adiabatic ascent 

to produce a lightening of weight (such that a horizontal pressure differ- 

ential is generated at low altitude to sustain swirling), the more common 

tornado is consistent with a pressure deficit on the order of one-hundredth 

of ground-level atmospheric pressure. Such a tornado is not detectable 

by means of the observable just discussed, the "hole" in a cirrus shield. 

However, perhaps 98% of the death and destruction wrought by twisters is 

caused by approximately 2% of the total number of tornadoes (ref. 17). 

Thus, it seems appropriate to concentrate on an observable that characterizes 

the exceptional tornado of two-cell type, and which is consistent with 

a pressure defScit on the order of one-tenth of ground-level atmospheric 

pressure. Indeed, it may be speculated that "eye" insertion tends to be 

of periodic nature, such that a so-called supercell (i.e., a multiple- 

tornado-spawning tornado cyclone) often undergoes several transitions from 

one-cell to two-cell structure during its lifespan, which may be on the order 

of six hours (refs. 1,18). 

Observors in aircraft flying over the cirrus shield of some well- 

developed thunderstorms have noted "hole formation" associated with local 

pronounced descending air flow and re-evaporation of condensed water 

substance by compressional heating (refs. 19,20). On the time scale of 

one-quarter to one-half hour, severe tornadogenesis occurred within the 

thunderstorm observed, on several occasions. It is reiterated that a 

nascent "eye" by no means assures that a two-cell structure fills the 

troposphere, so it is to be expected that, on some occasions, one or more 



moderate-intensity tornadoes follow cloud-top descent. Of course, one-cell 

tornadoes may arise without any such "cloud collapse." 

Recently, returns from dual pulsed Doppler radars have been inter- 

preted to infer that tornadogenesis in a mesocyclone entails evolution from 

one-cell to two-cell structure (ref. 18). In particular, tornado onset is 

suggested to be coincident with the occurrence of a dry weak-reflectivity 

downdraft, within a swirling updraft with high reflectivity. Thus, the 

thesis proposed in ref. 1 is given further support.* (See also refs.19-22.) 

Establishing the spatial resolution that would be required for satellite 

detection of the downdraft "eye" seems worthwhile, even if such resolution 

currently is orders-of-magnitude finer than the resolution of existing 

instrumentation. The width of the tornadic "eye wall" 

sphere, for a severe two-cell tornado, is an output to 

extracted from the model in the work reported below. A 

to know what properties characterize the "eye" and "eye 

y in the C troposphere, because sufficient thermal anomal, 

heated core, over ambient temperatures at the 

able one day. 

n the upper tropo- 

be ultimately 

so, one would like 

wall" in the upper 

ompressionally 

same altitude, may be detect- 

Of course, the most direct procedure woul d be to concentrate entirely 

on the thermohydrodynamics of the upper-tropospheric flow in a two-cell 

model of a tall narrow intense atmospheric vortex. However, the tornado 

* 
Inferences from radar returns should be drawn with caution. For example, 

radar returns are received first at midtropospheric altitudes from rotating 
thunderstorms, and only later are returns received from low levels (ref. 2). 
The inference is drawn that swirling develops first in midtroposphere and 
only later develops at lower altitudes. But radar depends on reflection off 
condensed water substance for a return, and so absence of a return does not 
mean, necessarily, that no swirling exists at low altitudes when swirling 
is observed in midtroposphere. In fact, while density stratification of 
the atmosphere modifies the applicability of the classical Taylor-Proudman 
theorem (ref. 23), still one suspects swirl is not confined to midtropo- 
spheric levels only. Since the condensation level descends as rotation 
increases (witness the descent of the tornado funnel cloud (ref. 24)), 
because energy is transferred to dynamic motion at the expense of static 
enthalpy, delayed low-level returns are quite plausible. (Cf. ref. 25.) 
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must be examined as a total flow system, in orderto obtain the proper fluxes 

of mass, momentum, and heat into and away from the upper-tropospheric flow. 

Thus, one must model the entire tornado; in fact, the logical procedure is 

to "process" the tornado "throughput" analytically in the same sequence as 

the tornado "processes" the "throughput" in the field. Hence, one must 

commence with the low-level swirling inflow, proceed to the near-central 

swirling updraft, and only then undertake the high-level swirling outflow. 

The authors are grateful for helpful technical discussions with Robert 

Costen of NASA Langley Research Center, Hampton, Virginia; his encouragement 

throughout this work is appreciated. The computer programs were written by 

Phillip Feldman; the graphical presentations were prepared by Asenatha 

McCauley; and the editing and typing of the manuscript were carried out by 

Patricia DeCuir. 

6 



SYMBOLS 

C 

F* 

F 

G* 

G 

g* 

h* 

m 

N 

n* 

P 

F 

-* P 

P 

Q 

the peak value achieved by the dimensionless streamfunction $ 

in the separated surface inflow layer 

the distribution of the quantity (r*v*)2 as a function of I/J*, m4/s2 

F*/r*2 

the distribution of the total head as a function of $I*, m2/s2 

G*/V*2 

acceleration of gravity, m/s2 

height of the surface inflow layer, m; also, thickness of the 

separated inflow layer, m 

h*/r; 

the peak value of IJJ in the surface inflow layer just prior to 

separation 

( 1 +Q ) 1'2; also, the perturbational value of x at small values 

of 8 

number of points used to resolve the separated-inflow-layer structure 

distance normal to a streamline, m 

(p* - P;)IPd*v*2 

djlldz 

pressure, kPa 

p*/ ( ; Pp*2 ) 

9*/v* 
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_-. 

9* 

r* 

S* 

U* 

U 

V* 

V 

V* 

V 

W* 

X 

X 

x 

Y 

Z* 

I 

(u* 2 +w* ) 2 'j2, m/s 

cylindrical radial distance from the axis of symmetry, m 

distance along a streamline, m 

cylindrical radial velocity component, m/s 

u*/v* 

the peak swirl speed in the potential portion of a vortex, m/s 

v*/V* (also written as v) 

azimuthal (or tangential) velocity component, i.e., swirl, m/s 

v*/V* (also written as V) 

axial velocity component, m/s 

1 - Cl - (i/c)J1'2 

Tr*/h* 

r*/ri (also written as X) 

z*/h* 

axial coordinate, in cylindrical polar coordinates, m 

Z*/ ri 

h 

h 

r*V*, m2/s 
1 



incremental distance in X 

Z*/ri 

angle giving the orientation of a streamline to a line parallel to 

the z* = 0 plane; also, azimuthal coordinate 

gas density, kg/m 3' 

Q/(1 - X> 

- 
r*/rjS (.also written as x) 

streamfunction, m3/s 

$*/ri r* 

Subscripts: 

a ambient ground-level value 

i time node in a finite-difference grid 

j spatial node in a finSte-difference grid 

0 starting value; also, pertaining to the outer edge of the vortex 

1 pertaining to the condition at which v* = V* 

Superscripts: 

perturbational quantity, dependent on X only 

dimensionless quantity (also denoted by absence of an asterisk) 

dimensional quantity 

-f 

h 

vector quantity 

unit vector 



ANTICIPATION OF TORNADOGENESIS 

Before details of the "eye"/"eye wall" portion of a mature severe 

tornado are sought by modeling, some further brief.coaunents on the use 

of geosynchronous mesoscale-resolution meteorological satellites for 

anticipation of tornadogenesis are set forth. 

Typically, a midtropospheric minimum in the total static energy 

(the sum of static, gravitational, and potential-latent-heat-of-phase- 

change contributions), such that large low-level values are recovered in 

the upper troposphere only, is suggestive of local-severe-storm conditions 

in the midlatitudes. In fair weather, the profile of the total static 

energy increases monotonically with altitude in the midlatitudes. In 

moderately cloud-free areas, the mesoscale satellite seems incomparably 

capable of detecting convectively unstable situations by continuously 

measuring through the depth of the troposphere over broad expanses, by 

rapidly processing the sounding data, and by judiciously concentrating 

on suspect areas. The difficulty is that whether, when, and in what form 

the possible severe weather is to be manifested, today largely eludes 

understanding. Some appreciation of the role of vertical wind shear and 

internal gravity waves as severe-weather initiators has been attained, 

but tornado forecasting remains a remote goal. At present, modelers have 

not evolved stability analyses which indicate successfully the conditions 

under which a one-cell structure of a tornado cyclone becomes unstable to 

small disturbances, and might undergo a transition to a two-cell structure. 

Thus, after but brief survey, one tends to doubt the near-term prospects 

of a mesoscale-resolution satellite as a means 'of anticipating tornado onset, 

and to concentrate on rapid detection of severe tornadoes. 
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TORNADO MODELING: METHODOLOGY, AND A PROPOSED STRUCTURE 

The modeling undertaken here is not an attempt to simulate the entire 

vortex system from the fundamental conservation laws and boundary conditions; 

others (refs. 26-28) are pursuing this course and we think that a contribu- 

tion aimed at the understanding of the phenomena in particular regions within 

the storm would be of greater value than yet another overall study. 

The methodology for modeling adopted here involves a conceptual sub- 

division of the mature severe vortex into logical parts, in each of which 

different physical phenomena dominate. Only the locally significant 

mechanisms are retained in treating each subdivision, and thus approximate 

methods of higher analysis (supplemented by modest computational effort) 

succeed in displaying parametric dependence explicitly and yielding physical 

insight. A composite solution might then be synthesized from the locally 

valid solutions by requiring appropriate continuity of dependent variables 

and fluxes at interfaces between subdomains. Here the four-part subdivision 

first introduced by Dergarabedian and Fendell (ref. 8), to model a mature, 

exceptionally severe tornado in time average as an axisymmetric vertical 

closed two-cell system extending from ground to tropopause, is adopted; 

there is diffusive flux, but no convective flux, of any quantity across 

any boundary. It is important to note that the incorporation of an "eye" 

is the major innovation of ref. 8 on earlier three-part structure proposed 

by Turner (ref. 29) and Barcilon (ref. 30). 

The subdivisions are (Fig. 2): (I) a potential vortex and throughput 

supply, characterized by cyclostrophic and hydrostatic balances, with 

negligible radial influx; (II) a parabolic surface inflow layer, fed by 

very slow sinking from aloft and serving as a source of low-level swirling 

influx because of frictional forces ("teacup effect"); (III) a turnaround, 

"eye wall", and outflow region, in which air rises on a moist adiabat, the 

air ascending quickly enough to transport the condensed water substance 

11 



upward; and (IV) a nonrotating, slowly recirculating "eye" of dry air. 

The tornado is a once-through system, in which warm moist air in I descends 

slowly into II, the one region of the vortex in which friction dissipates 

angular momentum; the swirling influx in II is turned into a swirling upflow 

in III, the "eye wall" sloping away from the axis with height under conser- 

vation of angular momentum in a variable-density fluid; a larger pressure 

deficit from ambient (achieved by dry-adiabatic recompression in (IV)) is 

available to sustain large swirling speeds in I, owing to the outward slant 

of the "eye wall." The moisture-exhausted air that has been "processed" 

through the updraft annulus is deposited in the upper-tropospheric portion 

of region III, and does not interact with the "unprocessed" air remaining 

in region I. The "processed" air deposited in the upper portion of III is 

too dry to descend, then recirculate upward on a moist adiabat capable of 

sustaining a horizontal pressure deficit; tornado lifespans are too brief, 

anyway: if the air in the upper portions of III descended too quickly, 

compressional heating would destroy the radial pressure gradient between 

edge and axis requisite to sustaining high swirl (and the system would 

disintegrate). Suggestions by Deissler (ref. 31) that recirculation may 

occur seem unlikely. Exhaustion of the throughput of I, the lower total- 

static-enthalpy property of originally midtropospheric air of I, topographic 

disturbances, etc., cause eventual decay of the system. However, explana- 

tions for decay based on simple radial diffusion of angular momentum in 

time are incomplete and unsatisfactory. 

It is now widely accepted that turbulent shear flow is not just a 

random "mess"; rather, spatially refined, time-dependent measurements 

reveal that these flows consist of coherent vertical interactive structures, 

such that the mean and instantaneous properties of the flow field may be 

quite divergent (ref. 32). The observation that a tall thin atmospheric 

vortex may contain transient smaller-scale vortices (so-called satellite or 

suction vortices) is about a century old (ref. 33). That unimodal distri- 

butions may not describe the character of fluctuations from the mean at 

12 



low altitudes in a tornado may evoke academic curiosity; but emphasis 

(refs. 19,34) on transient departures from axisymmetry appears premature in 

terms of the current status of whirlwind modeling, and seems digressive in 

terms of engineering-oriented concern with tornadoes (such as meteorological 

satellite requirements, nuclear power plant design, etc.). 

THE LOW-LEVEL INFLOW LAYER 

The principal subject of the current study is the turnaround, updraft, 

and outflow subdivision of the tornado, region III. This subdivision has 

received relatively little attention, but examination of it is required to 

characterize the "eye" radius as a function of altitude. 

Before attention can focus on region III, it is necessary to review 

what is known about the near-surface layer containing swirling inflow. The 

flow state at the exit of region II furnishes the flow state at the entrance 

of region III. The published solutions for the nonlinear parabolic boundary- 

value problem describing flow over a stationary surface under an intense 

vortex are far too many to enumerate, but only recently has lucid apprecia- 

tion of the subtleties of the flow been achieved. 

The outer flow in region I is a potential vortex: during spin-up, under 

convectively induced advection, fluid particles move closer to the axis about 

which they possess angular momentum. As soon as the pressure reduction by 

inflow and spin-up balances the pressure reduction achieved by near-moist- 

adiabatic ascent in the core, no further inflow is possible, and a quasi- 

steady state is achieved. Thus, in our model of the mature vortex, the outer 

boundary condition is approximately a potential vortex with negligible radial 

influx (ref. 8). At least as early as 1969 (refs. 35,36), results pertaining 

to a tornado boundary layer were reported in which, under a potential vortex 

without radial flow, the tangential velocity component monotonically decreases 

to zero from the inviscid-flow peak, as the ground is approached at fixed 

radial station. The radial inflow increases monotonically from zero in the 

13 



potential vortex to a near-ground peak, and then decreases rapidly to zero. 

Perhaps because the calculation is not carried' in close enough to the axis 

of symmetry, the peak for the radial inflow at any fixed radial position 

never achieves values above about one-half the local swirl speed in the 

inviscid flow. In any case, these results furnish limited insight into 

boundary-layer structure; that contribution is made largely by analytic 

work now described (Figs. 3-6). 

Carrier (ref. 37) and Burggraf, Stewartson, and Belcher (ref. 38) 

noted that, under an inviscid outer flow with swirl speed increasing with 

decreasing radial distance from the axis of rotation, the role of friction 

is confined to an ever-thinning sublayer of the near-ground inflow layer. 

This frictionally controlled sublayer is immediately contiguous to the 

ground and, under the inner high-speed portion of the vortex,is exceedingly 

thin; across this thin near-ground sublayer, the swirl is uniformly neglig- 

ible, and the radial influx decreases from its local peak value (achieved 

at the outer edge of the thin sublayer, and virtually equal to the swirl 

speed of the inviscid outer vortex at the fixed radial position of interest) 

to zero (achieved at the ground) under the action of viscous effects. The 

preponderance of the surface inflow layer, which increases in thickness 

very modestly with decreasing distance from the axis of symmetry in the 

high-swirl portion of the vortex, is mostly inviscidly controlled. More 

specifically, at any height above the very thin near-surface sublayer, the 

conservation of radial momentum is a balance of pressure, centrifugal and 

inertial effects such that, at fixed radial position, the sum of the squares 

of the radial velocity component and of the azimuthal velocity component 

(the swirl) is approximately equal to the square of the local swirl of the 

outer potential vortex. The conservation of angular momentum is a balance 

of inertial and transverse-friction effects, but under the high-speed 

portions of the vortex, the role of friction on the continuing evolution 

of the swirl profile is not large. The conservation of axial momentum 

gives axial invariance of the pressure across the entire inflow layer in 

the conventional manner, and continuity reveals that a very small downward 

14 



drift feeds the radial influx (appreciable because the area over which the 

downward drift occurs is large). Of course, under the outer, slower portions 

of the potential vortex, i.e., further from the axis of rotation, the inflow 

layer is thinner, and friction is appreciable across the entire layer; 

however, it is the inner, higher-speed portions of the vortex that are 

relevant to the present objective of establishing the nature of the low- 

level inflow entering subdivision III. The point is that angular momentum 

is conserved along all streamlines with finite swirl emerging from region 

II and entering region III, because the flow across the width of the sur- 

face inflow layer (aside from the near-ground thin frictional sublayer), 

to excellent approximation, is inviscid. under the high-speed portion of 

the outer vortex (only). However, because of the role of friction during 

radial influx toward the tornado core in the outer portions of the surface 

layer II, the angular momentum of each emerging streamline differs. The 

angular momentum monotonically decreases from the peak value of the inviscid 

flow of region I for the outermost inflow-layer streamline, to zero for 

the streamline at the edge of the thin viscous near-wall sublayer. The 

extension of these results to a turbulent inflow layer is given by Carrier 

and Fendell (ref. 39), and, recently, a numerical study by Prahlad and 

Head (ref. 40) displays similar results. 

An important implication of the results just discussed is that, for 

radial positions within the distance at which the potential-vortex model 

holds for the inviscid outer flow, one cannot prescribe the radial profile 

of the swirl. That swirl profile, together with the radial and the axial 

flow components , emerge in the solution of the problem. This observation 

seems particularly pertinent to the two-cell-structure severe-mature-tornado 

case, in which the surface boundary layer separates prior to reaching the 

axis of rotation. Then, the inviscid character of the turnaround, in which 

conservation of angular momentum describes spin-up from a different datum 

for each streamline of the turnaround with significant swirl, may produce 

a radial profile of the azimuthal velocity component at fixed height that 

15 



is not easily anticipated. Thus, work (ref. 41-47) that prescribes some 

sort of rigid-body-like profile for the outer swirl at radial positions 

within the distance from the axis at which the potential-vortex-type flow 

holds, seems inadequate. 

Because the nature of the low-level flow in region II is important 

to the development given below for region III, it is noteworthy that, in 

addition to the laboratory measurements of refs. 36, 46, and 47, there 

are field markings indicating a strong radial influx, without rotation, 

into some tornadoes at ground level. The evidence is a so-called deposition 

line sometimes left behind in mud, sand, wood debris, etc., after tornado 

passage (refs. 48-50); small objects lie inclined toward the line tracing 

the path of the bottom of the axis, on both sides of the path. The 

objects lie pointing toward the trace of the axis, but deflected to some 

extent in the direction of whirlwind translation. Of course, existence of 

markings depends upon the surface traversed, and markings are not always 

easily interpretable, even if they do exist. Further, solid objects falling 

through a tornado may retain motion imparted by higher-level flow, where 

swirl is appreciable. So markings left by fallen objects may not be repre- 

sentative of the very-lowest-level flow field. 

PRELIMINARY REMARKS ON THE TURNAROUND REGION 

The difficulty in treating the "eye wall" annulus, region III, is 

that one has a free-streamsurface problem at both confining streamsurfaces, 

the streamsurface demarcating the "eye"/"eye wall" interface and the 

streamsurface demarcating the "eye wall"/inviscid-potential-flow interface. 

The location of each boundary must be ascertained in the course of solution 

of the boundary-value problem. 

Here, the flow in the turnaround region is formulated first in 

cylindrical-polar coordinates, and, in that coordinate system it is an 

elliptical problem. Alternatively, a thin-layer approximation can be 
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adopted, in which case the problem is reduced to an ordinary differential 

equation by averaging some annular properties over the thickness; the 

result is an estimate of radial displacement of the annular centerline as 

a function of "eye wall" properties. Finally, the "eye wall" problem is 

rendered a tractable initial-value-type problem by reformulation in terms 

of streamfunction and orientation coordinates and by numerical integration 

after finite-differencing. 

The most interesting aspect of the solution is the manner in which 

the erupting boundary-layer streamlines run in toward the axis of symmetry, 

and then move away from the axis, with increasing altitude. In fact, the 

solution tends to be periodic with altitude, such that successive inward 

and outward excursions of the "eye wall" annulus provide the formal solution 

of the formulation. However, it is highly probable that this configuration 

becomes unstable and that the description is valid only locally in the 

turnaround region. 
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A BOUNDARY-VALUE PROBLEM FOR THE TURNAROUND 

An inviscid incompressible steady axisymmetric model of the turnaround 

region in a severe tornado is adopted; the cylindrical polar coordinates 

have their origin at the ground on the axis of rotation (and of symmetry) 

(Fig. 7). 

The conservation of angular momentum and of mass may be written in 

the form 

(r*v*)' = r*2F($), 

-r*u* - r*h* a+ 
Tr az* 3 

r*w* - r*h* w 
7r ar* 2 

(1) 

(2) 

(3) 

where v*, u*, w* are circumferential, radial, and axial components of velocity, 

r* = riV*, and ri; is the radius at which the pressure in the potential 

vortex is the same as the pressure in the stagnant core. Super asterisk 

denotes a dimensional quantity; no asterisk, a dimensionless quantity. The 

cylindrical radial coordinate is r*; the axial coordinate, z*; the maximum 

height of the surface inflow layer, h*; the streamfunction for the secondary 

flow (involving velocity components u*, w*, only), $*. The function F($) 

describes the distribution of angular momentum, which, of course, is con- 

served on each streamline. 

Conservation of radial momentum is implied by (pi is fluid density) 

(4) 

and Bernoulli's equation is 
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2 2 u* +w* 
2 

+ p* + r*2w) + g*z* = 
Pi! 2r*2 

(5) 

The gravitational contribution is negligible within the region of interest 

here and the pressure across the inlet of the turnaround region is constant, 

so (5) becomes 

2 2 u* +w* 
2 

.+ p* + r*2F(+) _ r*2 + Pf 
Pi! 2r*2 2rp2 PJ ' (6) 

where p‘; is the pressure at ri. Within the potential vortex and in the 

boundary layer beneath it, 

pz - pi L (~2/2)V*~ = (p;f/2)(r*2/rp2), (7) 

where pi is the ground-level ambient pressure (given). 

From a crude treatment of the turnaround, to be published elsewhere, 

(h*/rT) L 0.2 for relevant rT,V*, where typical (given) values, for a 

severe tornado, are r? : 160 m, V* : 100 m/s. In any case, h* and r? are 

taken as known. Thus, in addition to its use in (2) and (3), h* is employed 

to nondimensionalize the independent variables: 

x = nr*/h* , y = mz*/h*. (8) 

Subtraction of the radial derivative of (5) from (4) gives 

x i$,,+II, 
( ) YY 

+y-=o, (9) 

where subscripts x and y denote partial differentiation. The swirl profile 
F(q) is known from conditions holding at x = x, = .rrrf/h* E T/h. It is known 

that the flow in region II is such that F is a monotonically increasing 

function of I/J, where F(0) = 0 and F(1) = 1, and where the datum $(x1,0) = 0 
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is adopted, and from (2) and (8), 

7r 

Nx, d = s ubq,d dc - I, (10) 
0 

where u = u*/V*, and v = v*/V*. Clearly, for F linear in $, (9) becomes 

Helmholtz's equation, and for F quadratic in $, (9) remains linear. Such 

simple forms for F($) are not detailed replications of (r*v*)/r* in region 

II, but they are potentially useful approximations. 

The pressure along the streamline that separates from y = 0,at x = x1 

remains at p?, for the model of a nonrotating "eye" isobaric at altitudes 

at which gravity plays no role. Then, from (6), since F(0) = 0, 

($,I2 + ($,I2 = ?- ( ) 2 

x1 
on + = 0. 

The pressure along the streamsurface + = I, which passes through the 

circle x = x 1, y = n, should b e consistent with the pressure in the potential- 

vortex region; hence 

2 
x1 P(&Y) = P, + 1 - -y 

c ()I 
, (12) 

where 

p=*. 
2 Pp* 

(13) 

From (6), (12), and (13), since F(1) = 1, 

$; + l$ = 0 on + = I. (14) 
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This condition merely states that there is no contribution from the secondary- 

flow velocity components u*, w* to the pressure field, where region III 
interfaces with region I. 

Equations (9), (ll), and (14) constitute the boundary-value problem 

of interest, when supplemented by a relation for F(q), obtained from pre- 

viously executed analysis of region II. By (1), (2), (6), and the fact 

that w(xl,y) g 0, the relation for F(q) gives implicitly an expression for 

$(x1 ,Y) 3 0 < Y 2 r, with which to initiate the analysis (see below). Finally, 

it is anticipated that $(x,y), as given by the boundary-value problem is 

periodic in y; this periodicity reflects the fact that the formulation must 

be revised after completion of about one'cycle. More explicitly, it is 

anticipated that the locus of any streamline, say $ = I/2, as y increases, 

decreases to a minimum value of x, then increases in x to recover its 

initial value x = x1 and to achieve a peak value in x, before decreasing 

back to x = x1 to begin another period. It is to be expected that the 

undulating flow so generated will be unstable somewhere along its trajectory, 

but our present job is to find that flow and the stability problem is 

deferred until that is done. Of particular interest are the amount by 

which v exceeds the value associated with x = x1, $ = I, and the values of 

x and @ at which the maximum occurs. 

For explicitness, a rough characterization of the function $(xl,y), 

0 2 y < n, is now presented. 

(6) may be rewritten as 

In the largely inviscid portion of region II, 

u2(x,y) + v2(x,y) f (x,/x)2 . 

From (1), (2), and (15), one obtains 

-u(x,.y) = 
w(xl ,Y 1 

ay = 1 - [v(xl.~)12} = Cl - F(+)1"2, { 

(15) 

(16) 
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where 0 5 F($) 2 1 for 0 2 $21. Thus, ~J(x~,Y) is given by 

$(x1 SY) 

Y= J 
0 (1 -[F;;),}1'2 

where q~ + I as y + IT (cf. (10)). For F($) = $/I, 

IJ = y l- & , I = ; 3 v2(x1,y) = ~ 
( > 

a 1-h. 
( > 

(17) 

(18) 

For F(IJ) = bl~/I)~, 

dJ = 21'2sin(y/2), I = 21’2+v2(xl,y) = sin2 (y/2) . (19) 

In fact, 

V(x,,y) i 1 -.exp (- sy) , c A 3 , (20) 

might be more realistic, but is far less tractable. 

In summary, if 

y(x,y) = df2.d , G’(y) = w , 

Then the boundary-value problem is, for 0 2 Y 2 1, 

x($yx) + yyy + G’(Y) = 0 ; (22) 

Y2 x + y2 = g- 
2 

( > y 1 
on y = 0, Y2 +Y 

2 
x Y 

=0 ony=l; 

(21) 

(23a) 
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y(xl,y) given, with JI periodic in y. (23b) 

One might consider interchanging the roles of the dependent variable 

J, and the independent variable x, and using perhaps some technique within 

the framework of the method of weighted residuals, to extract the desired 

information from (21) - (23). Because the authors consider numerical 

treatment of (21) - (23) worth pursuing, the formulation has been set forth 

in some detail. However, alternative procedures are used in this report to 

study (21) - (23). 

TREATMENT OF A SEPARATED LAYER WITHOUT STRUCTURE 

A momentum balance in an axisymmetric separated boundary layer without 

structure is examined. The thin sheet (or "eye wall") is the demarcation 

between any "eye," isobaric at pressure p!, and a potential vortex with 

radially dependent pressure given by (12). At r* = rj;, p* in the sheet equals 
I 
I that in the "eye" (Fig. 8). 
I 

Henceforth in this section the symbol r*(z*) denotes the outside 

surface of the "eye wall" without structure. At the point A, given by 

[r*(z*L z*l , the principal radii of curvature are (1 + [r*'(z*)]2}3'2/r*11(z*) , 

the radius of curvature in a plane containing the axis of symmetry and the stream- 

line on which point A lies, and r*(z*)fl +[r*'(~*)]~}"~, the radius of 

curvature in a plane perpendicular to the streamline on which point A lies. 

Super prime denotes ordinary derivative with respect to the argument of the 

function. The velocity component in a plane containing the axis of symmetry 

is denoted q*, while the velocity component (swirl) in a plane perpendicular 

to the axis of symmetry is denoted v*. Thus, if G is a unit vector in the 

plane containing the axis, and e^ is perpendicular to c and refers to the 

azimuthal component ina cylindrical-polar-coordinate system, then 

G* = q*^t + v*;. (24) 
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The force balance perpendicular to the thin sheet at,[r*(z*), z*] 

equates the pressure gradient consistent with a potential vortex outside 

the sheet, to the component of acceleration perpendicular to the sheet. 

There are two contributions to the acceleration, each involving the 

square of a velocity component over an appropriate radius of curvature: 

-al?? =- 
( > 

q*2 r*” 2 
ah* pd* [l + (r*1)2]3'2 - r*[l + ;:*I) ]112 

where h* represents a coordinate running across the sheet. 

Variations in velocity occurring across the sheet are not resolved 

(r* - t-TV*): 

J 2 r*2V*2A* 
v* dh* = r* 2 1 

' rk2 * 

J- q*2dh* = 

B* =/[@@j2 dh* . 

The potential- vortex form of v* is used in the definition of A*. 

(25) 

(26) 

(27) 
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From these definitions and from (12), to an accuracy that serves 

current purposes, 

A*V*2r*2 B*VX2r*" 

f (r*1)2 ll c 
l/2 - 

(r*')2 1 
3/2 ’ 

1 + 

The following nondimensionalization is introduced: 

r* x=p ) I= Z* * 

r* 1 

2A* - 
= 3 P 

1 a=rjr, 1 % 1' 

If A* = (h*/2), B* = (h*/2), seemingly reasonable values, then 

&!$h. 
1 

Under (29), (28) becomes (a,B specified) 

l : 
a 6” _- = 

X -3 x (1 + X12) 
l/2 - 3/2 * 

(1 + X’ 2, 

-11 =- X al+? 
B 

~3 2 - + gp l (1 + ,J)3’2 . 
( > 

(28) 

(29) 

(30) 

(31) 

-- 
In this translationally invariant equation, it is taken that x(z = 0) = 1. 

It is shown below that x is periodic in 1. Solution is sought for positive 

and negative z, where the boundary conditions are 
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F(o) = 1 (32) 

X’(0) = Y;, given const. > 0. 

The boundary conditions preclude odd or even solution for x in 1. Sought 

are x -+, the largest value of x, which occurs where x' = 0, and x' , the 

smallest value of x, which also occurs where x' = 0. In that x- < 1, 

there is "overshoot" of the swirl, and, from (12), there is decrease of 

pressure from the value that holds in the "eye", i.e., in 0 < r* < r*(z*); 

it is reiterated that the magnitude of the swirl overshoot and pressure 

decrease are of particular interest. 

While numerical integration of (31) - (33) is required ultimately, 

some preliminary treatment is helpful. Since (31) is translationally 

invariant in I, phase-plane analysis is introduced (Fig. 9): 

dx -- 
d2x - - 

= p(x) * - = dP(x) _ dx dP - 
dy2 

- _ -- = pdJ 
(34) 

dy d?! dy dx dx ' 

Thus, 

pFF’ a 
(1+& 

3/2 = -3. 
x (1 t F2) 

l/2 +$- 1. 

The slope is infinite at v = 0 and is zero where 

a 
F3(1 + F2 y2 

+L 
;r2 

1 = 0; 

(35) 

(36) 
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l 

.,..--.----. -I I---~-- -.-- .--_ 

the intersection of the curve of (36) with the ir = 0 ray is given by 

a + -- 
FI I$- l=O, (37) 

X* 

where x*=1 for a=O, yk > 1 for c1 > 0. For 1 >> a > 0, 

X*= 1+ (a/2) -(3a2/8) + . . . 

Although the following development is not pursued to the extent of 

obtaining results, it may be worth noting that if 

H(x) = (1 t ir2)-1/2 , (38) 

then (35) becomes 

If 

then 

;PH’ = @.+ 1 _ 1 . 
rr3 K2 

-c T = x 2 
, 

dH 2B z - aH = T -l/2 - ,-312 , 

or 

H = ( f3y2)-l - (&?I2 (1 + i) exp (k&) erfc(g)1/2 

(39) 

(40) 

(41) 

+Eexp $$ 3 
0 

(42) 
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where E is a const. of integration. From (38), (40), and the definition 

7 z (dx/dF), one may write formally 

dx -= 
dl 

{ 1 + [H(r)]-2}1'2 = d(T -1'2) . 
d2 

Thus, 

dl = d(?'2) 

(1 t [H(T)]-~}~'~ ' 

where H(T) is given by (42). 

For the special case a = 0, i.e., no swirl, multiplication of (35) 

by x' yields 

(1 $2)1,2 = 
(X - 1)2 f3 

x +m ' 

where the constant of integration has been written as (B/m), with 

-2 l/2 m - (1+x;) 

(43) 

(44) 

(45) 

(46) 

for consistency. It is recalled that ;";d('dx(O)/dY) is a given positive 

finite constant. Inspection of (45) reveals that ?is maximum at x = 1, 

is the maximum value of (1 + ?2)1'2, whence the symbol m. 

(47) 

For To+0 so m + 1, x'merge to unity; this case involves a vertically 

separating surface inflow layer, and hence no overshoot. For To+ ~0 so 

m -f ~0, x' remain bounded: 
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--+ X = 1 + ; f (;y2 [2 + g’, ; (48) 

this case involves effectively horizontal inflow of the separating surface 

inflow layer, and leads to the minimum value of x' for fixed 8. For 

B = 0.1, x+H 1.37 and x-z 0.73; for f3 = 0.2, xti 1.56 and x-z 0.64. 

The plausible range of B = 0(0.2), from a crude analysis of the turnaround 

to be published separately; it is recalled that f3 is associated with in-plane 

motion. These results suggest what proves to be a general trend: x- 

decreases as yd and B increase. 

Finite values for a indicate finite swirl; increasing a yields larger x- 

and smaller overshoot. From results of numerical integration, for finite a , 
-+ 
x- approach finite values as KA + m for fixed B. For the plausible values 

a = p = 0.2, for To = 2, 5, 10, the corresponding values of x'= 0.77, 

0.72, 0.70. Hence, swirl overshoots in the range of about 10% seem plausible, 

but no more; estimates that swirl in the turnaround exceeds the swirl at 

x = 1, 7 = h (in terms of the definitions of (.29)) by about 100% (ref. 26) 

are excessive according to this analysis. Further results are given in 

Table 1 and graphical presentation is given in Figures 10 and 11. 

A MARCHING-TYPE TREATMENT OF THE TURNAROUND WITH STRUCTURE 

A model problem is adopted to study in more detail the local configuration 

within which transition occurs, from radial swirling boundary-layer inflow to 

vertical swirling "eye-wall" upflux, for a steady, largely inviscid vortex. 

Slightly idealized distributions for the radial and circumferential velocity 

components at a particular radius are adopted as input. The model problem 

requires that the streamline which is closest to the axis of symmetry, and 

which constitutes the "eye"/"eye wall" interface, is adjacent to a stagnation 

region of constant pressure, denoted pt, and determined in a more complete model 

by hydrostatic considerations in the vertical; here, pi is taken as given. 

It is recalled that at radius ri, at which the surface-boundary-layer 
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"inlet flow" to the turnaround is prescribed, the pressure associated 

with the outer vertical flow of region I is also pi.' Again, of particular 

interest is the largest amount by which the speed in the transition region 

exceeds that at r* = ri. It is reiterated that since the flow emerging from 

the boundary layer is largely inviscid, the analysis for the turnaround is also 

to be inviscid. 

Conservation of mass and momentum are written in unconventional 

form because it is convenient to adopt as independent variables (coordinates) 

and the angle 8 

lative to a line 

plane, 

line re 

the streamfunction for the velocity in the (r*,z*) 

giving the orientation in that plane of the stream 

in the plane parallel to z* = 0 (Fig. 12). 

The streamfunction $* is defined by 

w* r*q* = m , (49) 

where r* again denotes the conventional cylindrical radial coordinate at 

which the velocity is to be calculated, q* is the velocity in the (r*,z*) 

plane, and n * is the distance normal to the streamline. The streamfunction 

of (49) is identical, of course, with the streamfunction for which 

bee (2) - (3)) 

r*u* = _ ax 
az* 9 

r*w* = i!!C 
ar* ' 

(50) 

(51) 

where u* and w* are the radial and axial velocity components, respectively, 

and z* is the axial coordinate. 

The circumferential velocity v* obeys the angular-momentum-conservation 

requirements (see (1)) 

r*2v*2 = F*b*t) , (52) 
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with F*($*) determined when the velocity distribution of. v* at r* = r-2 

is prescribed. The principal curvatures of a surface $* = const. are 

(M/as*) (in the (r*,z*) plane, where s* is distance along the streamline) 

and sin 0/r*. 

The conservation of momentum along a streamline is equivalent, in the 

inviscid theory, to the statement that the total head is a function of $* 

only, i.e., 

q*2 + 2 + p* 
2 2 P?i 

= ,G*(;*) + !$ . 
d 

From comparison of (53) and (5), qx2 = 

implied in the specification of q* and 

is a case of particular interest, 

(53) 

u” 2 + w* 2; like F*($*), G*($*) is 

v* at r* = r* 1, and G*($*) = const. 

The conservation of momentum in the direction normal to a surface 

Q* = const. is implied by (cf. (25)). 

4 > 
a p* = Vet sin 8 

an* s r* 
_ q*2 ae * 

as* 
(54) 

This equation must be rewritten for the coordinate system mentioned earlier. 

It is noted that 

y- = w* ap* = an* an* a$* 
**ap* r 9 a$* , 

and also that 

2f-Z cos 8 
as* &s-y= '(ar*/ae)* 

Thus, 

(55) 

(56) 

(57) 
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In 457), and subsequent 

with 8 held fixed, and 

Finally, note is 

so that 

equations, it is implied that a( )/a$* is taken 

vice versa. 

taken of the geometric identity 

= sin 8, 
8* fixed 

ar*= sin 0 -- 
w* r*q* ' 

(58) 

(59) 

Equations (52), (53), (57), and (59) constitute a set of four equations 

from which the four unknowns v*, q*, p*, and r* can be calculated, where 

each unknown is a function of $* and 8. 

The appropriate initial conditions are 

P *= Pi 3 r* = r* 
1) F*($*) given, G*(+*) given on 8 = e. = 0 , 

0 < 9* 5 @iax * (60) - 

A particularly interesting case is F* = (const.) $*, G* = (const.) $i,, , 

with $i,, calculable. 

The boundary conditions are G*($iax) = V*2/2] : 

p*(q = 0,e > = pi , (61) 

P*($;ax8) PZ 2 Pi v*2 1 2 p;r*2 1 - - 1 - = - - = - 

r*2(lii;ax,e) ri2 1 ,(62) 

where I'* - riV*, with ri,V* (and hence pi) given. 
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The following nondimensionalization is adopted: 

V = v*/V*, Q = q*/V*, X = r*/r; , 5 = z*/r; , P = (p*-pi)/~iV*' , (63) 

F = F*/r*' , 9 = $*/rtr*, G = G*/V*'. (64) 

Then, (57), (59), (52), and (53) become, respectively, 

7 
V' sin 8 + Q cos 0 

'Ic, = Qx2 xx, ' 

x = sin 0 
UJ XQ ’ 

v2 = F(+) 
2 ’ 

Q2 2 

2 
+ p,, =-- G(Q) 

2 

(65) 

(66) 

(67) 

(68) 

At r* = r* the thickness of the layer is denoted h*. Under the nondimen- 

sional-izattin, (50) becomes, at X= 1, 

g = -u = G(q) - F(@" , 

from (53), with qx2 = u*', p* = pz. Hence, at x = 1, if h 5 h*/rji , 

(69) 

VJ G s d% max 

5 = 

- G(Q1) 
[ 1 I" 

=r>h = J dQl 

- F(Q1) 
[ 

- - (70) 
0 0 --G$) - F(#'2 
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The case of interest, from results for the surface inflow layer, is G(+) = 1. 

Here the special case F($) = $/$max is considered: 

dJ 1 
max 

h 
d% ds = 

1 
0 [l - w~max)]1'2 

= 'max s 
0 [l-s] 

l/2 

hence, 

V-J max 

In general, for choice of G($), F(q), 

Henceforth, +max is taken as known and 

= 2vJmax ; (71) 

h 
= 7' 

70) gives Qmax as a function of h. 

is denoted by C. 

The boundary conditions are, from (61), (62), and (63), 

P=Oon$=O; P= -’ onQ=C. X2 

2x2 

(72) 

(73) 

The initial conditions at 8 = 0 are, for 0 < + < C, - - 

P = 0, x = 1, V = [F(#"= vo(q), Q = [G(Q) - F($)]1'2 - Q,(Q) - (74) 

in the form For O<e<<l, solution is sought 

Q($,e) = Q,(9) + el/' &JJ ) + . ..) 

W..be) = + el/’ s(q) + . . . , 

v(q..J,e) = vo(q) [l - el/’ F(+) - . . . ] y 

x(w) = 1 + el/’ F(Q) + . ..) 

(75) 

(76) 

(77) 

(78) 
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Substitution of (75) - (78) in (65) - (68) gives, since (67) 

becomes an identity, 

24 
$I=+; 

r 

‘L 
r' = 0 a>($) = const G m ; 

Thus, 

;I = ;a,, ; = -4, $ + VE m. 

From the first of (73), ;(JI = 0) = 0; from the second of (82), ;(O) = 0 

since VE(ii, = 0) = F($ = 0) = 0. Differentiation of the second of (82), 

and substitution from the first of (82), give 

(Q, ;‘;I’ = - $ Q, + m(V;)' ; 

2 -- 
m s 

; = 0 
Q,bb,) Nl + m VE 

QO . 

(7% 

030) 

(81) 

(82) 

(83) 

(84) 

But at $ = C, Q = 0, so Q,(C) = s(C) = 0. From inspection of (85), 

m2 = 2 ’ Qo(J1l) d4Jl , J (85) 

0 

since V,(C) = 1. For G(Q), F($) of interest, (84) gives ; + 0 as 

qJ + c. The quantities F, $, $ have now been determined, so (75) - (78) 

may be used to initiate the solution. 
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It is helpful to introduce 

036) 

where @(C,O) is neither singular nor zero. It is also helpful to 

introduce the following change of one of the independent variables: 

X = 1 - [l - ($/c)]l'2 e jJ = C[l - (1 - x)2J. (87) 

Thus, 

a 1 a 
qi= 

-= 
2C[l - (~/cp2 a+ z&-x+ (88) 

QUA = Cl - X)4 (x,e>. (.89) 

Equations (65) - (68) are transformed as follows: 

V2 sin e 
& px = @x2 

$ (1 - x)’ Q cos 8 
Xxe 

, 

sin 8 &xx = F’ 

V2 
F&(X) 1 

= 
x2 

3 

G[dX>] 
2 - 

(90) 

W) 

(92) 

VW 
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The initial conditions at 8 = 0 are, for 0 2 X 2 1, from (74), 

p = 0, X = 1, V = F[$(X)] "' = V,[j,(X)J, 

/,’ 
~ _ (G [$(X)1 - F[$(x)1}1’2 

1 -x = Q,(X) - 
? 

(94) 

., F 
The boundary condition on X = 0 is, from (.73), 

P(o,e) = 0. (W 

If G[@(X)I = 1 for + = X = 0, then since F[Q(x)] = o for q., = X = 0, 
from (93), 

@(O,e) = 1. (95b) 

Hence, 

x(0,e) x,(O,e) = 2C sin 8 *[x(o,e)J, = 4C sin 8. (96) 

The boundary condition on $ = C is now developed. Differentiation 

of (68) with respect to $ gives, with (67), 

From (85), 

QQ , F!(q) _ F(')x'$ + p = w . 

rc, 2x2 x3 Q 
(97) 

(98) 
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At $+C, 

12 
-2c4 

+ F'(C) F(C)&,, G' ((3 - - 
2x2 X3 

+p=2. 
9 

Butas @+C, 

F(C)x+ 
X3 

= F(C) sin e = 
x49 p+ ’ 

so 

+‘(x = 1,e) = 
CF'[$(X = l}] 

x2(X = l,e) 
- CG' [$(X=1>] , 

If G’ [$(X = l)] = 0, 

$‘(x = 1,e) = 
CF’ hdX = I>] ; 

XT x = 1,e) 

xX(x = l,e> = 2C1” sin 8 

F' [$(X=1)] "' * 

(99) 

(100) 

(101) 

ma 

(103) 

(104) 

The boundary-value problem is now of initial-value, or marching type, 

a significant simplification over (9), (ll), and (14). If the solution 

for P(X,8) V(X,e), $(X,0), and x(X,0) ‘is known at e = ei, then upon 

assignment of F[$(X)] and G [$(x)] , the solution may be found at 

t 

e=e >e it1 i' 
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One might proceed via adoption of an explicit finite-difference treat- 

ment of (90), by means of a four-point grid element with central spatial 

differencing and with special provision for enforcement of the boundary 

conditions (96) and (104) at X = 0,l. One may then obtain $(X,eitl) from 

(91) by simple differentiation V(X,Bi+l ) from (92) by simple substitution, 

and P(X,Bi+l) f rom (93) by simple substitution. The procedure may then be 

repeated to obtain values for the dependent variables as a function of X at 

the next increment in the time-like variable eit2. Unfortunately the 

accuracy of this fully finite-differenced procedure proves to be insufficient. 

Instead, the method of lines (refs. 51-53) is used, such that only 

the derivatives with respect to X are finite-differenced; as a result, coupled 

nonlinear ordinary differential equations, each of the first order, must 

be integrated forward in 8 from specified initial values. Specifically, 

(97) is written, by use of (91) and (92), as 

dXj( 0) 2C2sin2e(l - X.)' 

--a-F-- 
(Xj)2(Xx)j 

where xj(e) z x(Xj,e), with X1 
chosen, along with N, the number 

, J 3 ,...,N . = 1 2 005) 

= O, XN, = 1, and Xjtl > Xj. The Xj are 

of points used to resolve the structure in 

X for each 8. For the special case G[$(X)l = 1, from (91)-(93), 

('X)j = 
(XX) j 

t 
4C2sin2e(1 - Xj) 

(Xj)' (Xx)j ' 

4C2sin2e(l - Xj)' (106) 
t 

(Xjj3 (XX)j 

Three-part difference formulae linking Xjtl(e), xj(e), and Xj_l(e) give 

(Xx) j and (x~~)~, and thereby couple the differential equations for 

[dxj(f3)/de] , j = 1, 2, . . . . N. From knowledge of xj(e), one may extract 

Gj(e), Vj(e), and Pj(e) by the procedure alluded to in the previous paragraph. 
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The integration in 8 is initiated at 01, where 0 < O1 << v/2; the 

series expansion gives Xjtel)* The boundary conditions at Xl and XN are 

enforced in the expressions adopted for (xX)~, (Xxx),, (x~)~, and (xxx)N 

(ref. 53). 

Here the.simplest conceivable procedure is adopted as a first trial. 

The parameter N = 3; in particular, 

21/z 
x1=0,X2=1-~-,x3=1 (107) 

for equal mass flux about X2 for the special case F[$(X)]= q/C 5 X(2 - X). Thus, 

(xx), = 
(x3 - x2,(X2 -x1)2 + (x2 - x1)(X3 -X2)2 
-- . 

(x2 - X1)(X3 -X2)(X3 - $1 
, (108) 

2 
(xxx)2 = 

[ (x3 - x2)(X2 -x1) - (x2 - x,)(x3 - Xll 

(x2 -X1)(X3 -X2)(X3 -Xl) 
(109') 

Also, simple two-point differencing is used to express the boundary conditions 

in terms of x2(e): 

[x2(m)3, = 4C sin 8 q xl(e) = [x2(e)]’ - 4CIX2- X1) sin 8 'I'; (110) 
1 > 

(111) Cx.Le)l, = 2C sin 8 3 x3(e) = x2(e) + 2C(X3-X2) sin 8 . 

The entire problem then degenerates to numerical integration of one non 

ordinary differential equation for x2(e) from 8 = e1 to 8 = h/2) 

linear 
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A' particular case of interest, as previously noted below (60), is 

G[$(X>] = 1 ; (112) 

F[$(X)] = g 3 X(2-X)* F'[$(X)] = C-l . (113) 

It follows that, from (74,), 

from (851, 

From (75), (84), (86), (112), (113), and (114), for small 0, 

Q [WC> 3el = [l - (q/c)l1/2 a$(W),e] c [l - NJ/CP/~ 

t fjl/’ 
1 

NJ/C) 
[l - w)11’2 

b - z.c[l - bp]]f, 

where 

+[(w) -t ml -f 1 t e112(-m) . 

From (76), (82), (112), (113), and (114), for small 8, 

(114) 

(115) 

(116) 

(117) 

(118) 
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The results of this paragraph may be expressed in terms of X 

to furnish initial conditions at small but finite 8, with which to com- 

mence the numerical integration. 

Integration proceeds from 8 A 0 to 8 = (~r/2), where X(0,6) 

achieves its minimum value; the solution may be continued by reflection 

from 8 = (~r/2) to 8 = n: e.g., 

x[x, (Tr/2) - 0-J = q-x, (7-e) + 0-J (119) 

where 0 5 c 5 (n/Z). The solution for 8 = 0 to 8 = (~r/2) is initiated 

by adopting the negative root in (115), such thatX decreases with 

increasing 8, for fixed value of X. Solution for this half of the total 

"cycle" pertains to the inward excursion of the separated surface inflow 

layer. 

The solution is completed by letting 8 = n - Cr , 0 2 a~ (n/Z), 

in the boundary-value problem posed by (90) - (96), (112) - (113). The 

dependent variable X achieves its maximum value at X = 1, z = (n/Z); 

the solution may be reflected about a = (IT/~), to complete the solution 

for the "turnaround cycle." Formally, if one identifies a with 8, the 

solution for the outward excursion of the turnaround (discussed in this 

paragraph) may be obtained from the identical formulation that yields 

the solution for the inward excursion of the turnaround (discussed in the 

previous paragraph); the only difference is that one adopts the positive 

root in (115) in the initializing solution when one seeks results for the 

outward excursion. 

Results obtained by the method of lines to the marching-type boundary- 

value problem for the turnaround region with structure are given, for swirl 

profile linear in the normalized streamfunction, and for total head 

invariant with the normalized streamfunction, in Figs. 12-15. A key result 

is the very modest overshoot (Q 10%) of the swirl during inward excursion 
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of the separated inflow layer. Although the solution warrants considerable 

refinement, the locus of the low-level "eye wall" is now delineated. For- 

mulation to extend the solution for the "eye wall" properties, in a tractable 

manner, to the midtroposphere and upper troposphere is now the next logical 

,I challenge before modelers of severe tornado structure. 
I 

CONCLUDING REMARKS 

Over about the past decade, the authors have used relatively simple 

analytic methods to study quantitatively a quasisteady, axisymmetric 

model of a mature severe tornado, taken as a vertical closed system. The 

procedure has been to adopt locally appropriate simplification to obtain 

results for subdomains of the vortex; when the results have been obtained, 

a composite solution should be synthesized from the results for the separate 

subdomains by requiring suitable continuity of dependent variable and of 

fluxes at interfaces between subdomains. The methodology was the first, or 

among the very first, to yield the following results on tornadoes, some of 

which are now widely accepted. 

1. The peak swirl speed in a tornado, relative to the axis of 

rotation, never much exceeds ll.0 m/s; the length of the funnel cloud 

may be used to infer, both readily ,and quickly, the peak swirl, probably 

as accurately as more tedious techniques, 

2. The pressure reduction from ambient necessary to sustain such 

a large peak swirl speed may be achieved only if the vortex has two-cell 

structure, i.e., if the vortex has a central dry nonrotating "eye" 

of compressionally heated, descending air, situated within an annulus 

("eye wall") of swirling air rising on a near-moist-adiabatic locus of 

thermodynamic states. 
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3. The mature severe tornado consists, then, of a four-part 

structure: a potential vortex with the "throughput" supply of warm 

moist air, in a cyclostrophic balance; a near-ground inflow layer, in 

which friction dissipates angular momentum, and into which fluid sinks at 

a slow rate from above; a turnaround, "eyewall," and outflow layer, in which 

the swirling low-level influx separates from the ground, rises through the 

vertical extent of the troposphere, and moves radially away from the axis 

of rotation in the upper troposphere; and the warm "eye," with modestly 

recirculating flow. 

4. The surface inflow layer under the high-speed portion of the 

vortex consists of a two-part structure: a very thin sublayer, immediately 

contiguous to the ground, in which frictional effects are significant, 

and a much thicker region in which an inviscid description suffices. Under 

a favorable pressure gradient, the thin viscous sublayer becomes thinner 

as the layer moves inward toward separation into an updraft annulus, while 

the inviscid portion grows in thickness but modestly with decreasing 

radial position. In the inviscid portion, the squares of radial 

and azimuthal velocity components sum to the square of the local potential- 

vortex speed, at fixed radial position; hence, the large swirl component 

becomes a large influx component as the ground is approached at fixed 

radial position, until friction enters very close to the ground to enforce 

the no-slip boundary condition and to bring the velocity to zero at the 

ground. 

5. The turnaround region, in which the separating surface inflow 

layer becomes a swirling updraft, is described adequately as an inviscid 

layer, such that turbulent diffusion is not a central contributor to the 

dynamic balance (except in a very thin sublayer immediately contiguous to 

the "eye"). The amount of "overshoot," i.e., the amount by which the 

swirl in the "corner" flow exceeds the peak value achieved in the potential 

vortex, is modest. 
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The next challenge facing such a modeling approach for application to 

the problem of identifying the occurrence of a mature severe tornado, is 

restoration of hydrostatic effects, such that the turnaround solution initiated 

here is continued into the midtroposphere and upper troposphere. Only 

by so extending the present line of research can properties of the "eye"/ 

"eye wall" interface be delineated. This interface, the unique charac- 

teristic of the severe tornado, furnishes the one observable potentially 

accessible to a passively instrumented, geosynchronous meteorological 

satellite with mesoscale resolution, for the purpose of detection of the 

exceptionally dangerous whirlwind. Detection of two-cell structure in a 
vortex system is far more significant than detection of a Rankine-vortex- 

type, one-cell structure of a mesocyclone; existence of a mesocyclone by 

no means necessarily implies the onset of a severe tornado event, but 

evolution to two-cell structure within a mesocyclone is very highly sug- 

gestive of a severe tornado event. 

These statements perhaps have implications for the most profitable 

direction for tornado research aimed at anticipation of the onset of a 

severe tornado, as opposed to early detection of an already developed, intense 

whirlwind. Specifically, rather than apply linear stability theory to a 

two-cell vortex model in order to establish propensity to multiple- 

vortex (i.e., satellite-vortex) structure, one might better examine the 

conditions under which transition of a one-cell structure to a two-cell 

structure is preferred in the swirling system. Indeed, this particular 

stability problem seems to have been neglected, relative to either the 

multiple-vortex problem just mentioned, or the oft-examined question of 

initial organization of a weak depression that ultimately evolves to 

a mesocyclone. 
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In view of (1) the insight and convenience derived from explicit and 

largely closed-form results, (2) the absence of detailed field measurements, 

and (3) the uncertainties of modeling turbulent diffusion in rapidly 

swirling atmospheric vortex, the authors believe that such simplified 

subdivisional mqdeling of the tornado continues to be the most productive 

path to delineating whirlwind properties and structure. 

TRW Systems and Energy 

Redondo Beach, California 90278 

31 October 1978 
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Table 1. Numerical Results for Extrema of the Turnaround, from Integration 
of the Initial-Value Problem (31)-(33). 

(x-1 talc ix+) talc (x+)u.o 
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0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.1 

0.1 
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0.1 

0.1 

0.1 

3.1 

I.1 

3.1 

1.1 
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1.2 

I.2 

1.2 

I.2 

I.2 

1.2 

1.2 

1.2 

I.2 

1.2 

I.2 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

0.2 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

0.2 
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0.1 
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0.2 

0.4 

0.4 

0.4 

0.4 

0.0 

0.0 

0.0 

0.1 
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0.0 
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0.0 

1.0 

1.0 

1.0 

1.0 
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0.5 

0.5 
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2.0 

2.0 

2.0 

2.0 

2.0 

2.0 
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2.0 

1.0 
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2.0 

5.0 

10.0 
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2.0 
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5.0 
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2.0 

5.0 

10.0 
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2.0 

5.0 

10.0 

100.0 

0.791 

0.754 

0.742 

0.732 

0.718 

0.671 

0.656 

0.644 

0.820 

0.777 

0.762 

0.750 

0.748 

0.695 

0.677 

0.663 

0.876 

0.841 

0.828 
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0.845 

0.796 
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0.765 

0.774 

0.716 
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0.685 
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0.738 
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0.664 
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0.632 
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0.751 

0.738 

0.727 
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0.818 

0.808 
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0.738 
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1.264 

1.326 

1.348 

1.366 

1.392 

1.489 

1.524 

1.553 

1.295 

1.348 
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1.381 

1.422 
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1.541 
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1.212 

1.244 
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1.325 

1.369 

1.384 

1.396 
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1.530 

1.558 

1.581 
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1.838 

1.877 

1.266 
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1.352 
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1.397 

1.497 

1.533 

1.565 
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1.329 
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1.566 

1.181 

1.223 

1.237 

1.250 
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1.329 

1.352 

1.372 

1.397 
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1.533 

1.566 

1.606 

1.772 

1.832 

1.887 

Notes: Results for ("f&zo are from (40). Also, x for y; = 100 are within 2% 

of values for F; +a, for cl,6 studied. 
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THE THREE-PART STRUCTURE OF A MATURE QUASISTEADY 
MODERATE AXISYMMETRIC VORTEX 

TROPOPAUSE 

f 
ALTITUDE 

(2) 

GROUND 

SWIRL (VI 
(m/s) 

PRESSURE(p) 
(kPa) 

SWIRLING 
VORTEX 

t ~(15 km) 

ONE-CELL STRUCTURE 
POTENTIAL VORTEX IN 1 

A ‘0 
100 - 

‘1 

97 
I 

I 
,r 

‘1 ‘0 

Figure 1. A schematic, not to scale, of a tornado, with 40-m/s peak 
swirl relative to the axis of symmetry. 
of the swirl 

The radial profile 
, at midtropospheric altitude, is like that of a 

Rankine‘vortex. The peak pressure deficit from ambient, at 
ground, is about 3 kPa. Asterisk superscripts to denote 
dimensional quantities have been omitted. 
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THE FOUR-PART STRUCTURE OF A MATURE QUASISTEADY 
AXISYMMETRIC VORTEX (CLOSED SYSTEM) 

TROPOPiUSE 
A 

A 
--- 

I 4 

t 
ALTliUDE 

(4 

fi:Ef// ~ ’ 

0115 km) 

RAPIDLY SWIRLING + 
VORTEX 

GROUND 0' 7 

---I’ 00.5 km) 

z3 @ / 
I 

DISTANCE FROM 

* 

CENTER (r) - 

100 
SWIRL (4 

(m/s) 
0 

100 - 

PRESSURE (14 
(kPa1 

90 I :r 
'0 

Figure 2. A schematic, not to scale, of the structure of a tornado, with 
100-m/s peak swirl relative to the axis of symmetry. The radial 
profile of the swirl, 
nonrotating central 

at midtropospheric altitude, reveals a 
"eye"" joined to a nearly potential vortex. 

The pressure deficit from ambient, at ground level, may reach 
about 10 kPa; the outwardly sloped "eye"/"eye wall" interface 
permits fluid in the potential-vortex portion of the tornado 
to achieve swirl speeds consistent with this pressure deficit. 
Asterisk superscripts to denote dimensional quantities have 
been omitted. 
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THE BOUNDARY - VALUE PROBLEM 

CONTINUITY (ru)r + (rw& = 0 

RADIAL MOMENTUM 
(rV)* - (rv)* - (ru)* 

r 2 
= bh)zl z - u(ru)r - w(ru& 

ANGULAR MOMENTUM [u(rv)J z - u(rv)r - w(rv)z = 0 

BOUNDARY CONDITIONS: z --f -7 v + r/r, u + 0 

2 = 0: “=V=W=O 

r = ro: u = 0, v & r/r, 

” = umol + “eddy ‘eddy = 
K*Z*(U * z +3 *)I’*, 0 < 2 < q(r) 

k2(r/r)h’(r), z,(r) < 2 < 00 

I 

l/2 

(1 - F) dz; k*(rlr)G*(r) = tc2[zl(r)1* u,*[r, z,(r)] + v,*[r, z,(r)] 

SOLUTION: ru = -rp(r)g’(q), rv = rf(q), w = W(q) 

7 = z/s(r), s = ro[(ro - r)/(r, + r)] I/*, fi* = 1 - (r/r,)* 

g’* = 1 - f*, [H( q)f’ I’ + gf’ = 0 
MUST PICK f’(O), ql; W(r)) FOLLOWS 

f=g=O at q=O; f+ 1 as q+m 

Figure 3. The third-order parabolic boundary-value problem for time- 
averaged description of the turbulent surface inflow layer under 
a potential vortex over a flat smooth nonrotating boundary. 
An approximate similarity solution holding over the bulk of the 
thickness of the layer, under the high-speed portion of the vortex, 
is developed formally. This solution must be supplemented in a 
thin sublayer, contiguous to the wall, in which the no-slip 
condition on the radial inflow is enforced. Asterisk super- 
scripts to denote dimensional quantities have been omitted to 
simplify notation. 
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40 Ill 

ALTITUDE 
(2) 

GROUND 

THE PHYSICS OF THE INFLOW LAYER 

J(r, 2) = u(r. z)F; + .v(r, z)S + wk. 2) 4 

T= r’:+ z: 
-W 

100 m/s 

Y 

BULK 
OF 
BOUNDAR 
LAYER 

(INVISCID 
CONTROL 
OF 
RADIAL 
MOMEN- 
TUM) 

1 INTERMITTENCY) 

VISCOUS PRANDTL 
SUBLAYER MlXlNG 

LENGTH 

NEAR WALL 
CORRECTION LAMlNAR 

T 
MOLECULAR 
VISCOSITY /““/“/ , , SUBLAYER 

Figure 4. A schematic of the profiles of the velocity components over the 
entire width of the turbulent boundary layer under the intensely 
swirling portion of a potential vortex. The radial inflow 
achieved near the ground is almost as large as the swirl above the 
inflow layer, at the same radial position. Asterisk superscripts 
to denote dimensional quantities have been omitted. 
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VERBAL INTERPRETATION OF INFLOW LAYER 

FAR FROM THE AXIS OF ROTATION (rl < r < ro) 

RADIAL MOMENTUM: 

FRICTION, INERTIA, PRESSURE GRADIENT BALANCE 

ANGULAR MOMENTUM: 

FRICTION, INERTIA BALANCE 

CONTINUITY: -- 

SMALL DOWNDRAFT 

CLOSER TO THE AXIS OF ROTATION: (r, < r < ro) 

RADIAL MOMENTUM: 

INERTIA, PRESSURE GRADIENT BALANCE: V* = u* + v* 

(VERY CLOSE TO WALL, FRICTION ENFORCES NO-SLIP 
CONDITION) 

ANGULAR MOMENTUM: 

FRICTION, INERTIA BALANCE (FRICTION SMALL) 

CONTINUITY: 

SMALL DOWNDRAFT 

Figure 5. Further summary of the results of the surface inflow layer analysis. 
Asterisk superscripts to denote dimensional quantities have been 
omitted. 
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t I 
ALTITUDE, z* ’ 

I 

Figure 6. Another schematic diagram, not to scale, of the postulated four- 
part structure of an idealized mature severe tornado, again taken 
conveniently as a vertical closed axisymmetric two-cell system 
extending from ground to tropopause. The arrows indicate the 
secondary flow (radial and axial velocity compoennt streamlines). 
The radius of maximum wind (swirl) in I is r;; the outer radius of 
the closed vertical vortex system, r*; the maximum depth of the 
inflow layer, h*. The shaded area siggests where diffusional 
transfer of momentum is significant. 
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0 
- 

r* 

Figure 7. Schematic, not to scale, of an inviscid model of the turnaround 
region of a severe vertical quasisteady axisymmetric tornado. 
The "eye", region IV, is isobaric at pressure p*, over the vertical 
extent of interest here, where p* is also the p essure at r*=rT, 

a 
* 

z*=h* (because the pressure is pproximately invariant across 
the surface inflow layer II). The "eye wall", region III, is demar- 
cated by two streamsurfaces, +*(r*,z*) = const. (the position of 
each to be determined), encompassing the mass efflux from region II. 
It is recalled that a potential vortex holds in region I. 
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P + = p,* 

dr* v-z 
dz* 

0 

dr* -=o- 
dz* 

p*v*2 
P l =p,* + A-- 

2 

r; 2 [( )I l- - 
r* 

r+ (z*) / 
p+ = p,*, v* = v+ 

0 
- 

r* 

h* 

Figure 8. Schematic of the location of an inviscid "eye wall without 
structure" demarcating the interface between an isobaric non- 
swirling "eye" at pressure p* and a potential vortex. 
representing the "eye wall " A 

The sheet 
as thickness h* -+ 0; in the turn- 

around region, its displacement from the axis, as a function of 
height above the ground plane, is denoted r*(z*). 
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I 
I = QUALITATIVE SKETCH OF 

I 7 AN INTEGRAL CURVE 
1 

Figure 9. Phase-plane properties of equation (35), where P = (djT/dl), with 
x the dependent variable (x > 0) and z the independent variable. 
Isoclines of zero and infinite slope are noted. At X = 1, the 
distance from the axis of symmetry at which the surface inflow layer 
separates, 5 finite positive slope is adopted. For c1 > 0, x, > 1; 
for c1 = 0, x, = 1. The sketched trajectory (solution curve) is 
a limit cycle (closed curve indicative of periodic behavior). The 
periodicity is not of physical interest. 
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Figure 10. The solution to the boundary-value problem posed by equations (32), (33), and 
(35), for i$ = 2; the solution may be completed by symmetry considerations to 

constitute a full cycle. 



PRESSURE 

SWIRL 

Figure 11. The solution to the boundary-value problem posed by equations (32), (33), and (35), 

E for a = 0.2, 6 = 0.2, and !$, = 2, given in Figure 10, is further discussed. The 
"pressure" denotes the value of (1 - x- the "swirl" denotes the value of 
,-3[1+$2]4/2; 

2); 
the "radial/axial" denotes the value of "swirl" minus "pressure", 

i.e., the left-hand side of (35). 



h+ 

SEPARATED INFLOW LAYER 

OUTWARD EXCURSION 
i 

I 
INWARD EXCURSION 

Figure 12. This schematic of the inward, then outward, excursion of the 
separated inflow layer with structure, indicates the bounding stream 
surfaces $* = 0 and $* = C. The in-plane radial-axial flow 
speed is denoted q*; the swirl about the vertical axis, v*. The 
inward excursion need be solved for streamfunction-inclination angle 
e = 0 to 8 = (r/2), since the solution fore = (~r/2) to 8 = n 
may then be obtained.by reflection. An analogous statement holds 
for the outward excursion. The "eye" is isobaric at pressure pz, 
but the potential-vortex pressure varies with radial position 
r* as noted. 

64 



0.8 

0.6 
0 0.2 0.4 0.6 0.8 1.0 1.2. 1.4 1.6 
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Figure 13. Solution to the boundary-value problem posed by equations (78), 
(80), (105), (107), (112), and, (115), for C = 0.1, as obtained 
by the method of lines. The notation is that, for example, 
xj(e) = x(xj,O), where xj is defined in (87), (107). Here the 

dimensionless radial position x, defined in (63), is given for the 
inward excursion (m < 0) for 8 = 0 to 8 = (r/2), and for the outward 
excursion (m > 0) for (n. - e), for 8 = 0 t0 8 = (42). 
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Figure 14. The solution for the dimensionless pressure P, defined in (63), 
for the probl.em discussed in Figure 13. 



V 

V3, m * 0 

- V2, m < 0 
- 

V3, m S 0 

V2, m > 0 

VI, mZ 0 

I I I I I I I 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

e 

Figure 15. The solution for the dimensionless swirl V, defined in (63), for 
the problem discussed in Figure 13. 
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Figure 16. The solution for the dimensionless secondary-flow (in-plane, 
radial-axial) speed Q, defined in (63), for the problem discussed 
in Figure 13. 
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